
As you probably noticed, execution time for jobs in DCSR clusters is limited to 3 days. For those
jobs that take more than 3 days and cannot be optimized or divided up into smaller jobs, DCSR's
clusters provide a Checkpoint mechanism. This mechanism will save the state of application in
disk, resubmit the same job, and restore the state of the application from the point at which it was
stopped. The checkpoint mechanism is based on CRIU which uses low level operating system
mechanisms, so in theory it should work for most of the applications.

First, you need to do the following modifications to your job script:

1. You need to source the script
/dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

2. Use launch_app to call your application
3. (optional) add --error and --output to slurm parameters. This will create two separate files

for standard output and standard error. If you need to process the output of your
application, you are encouraged to add these parameters, otherwise you will see some
errors or warnings from the checkpoint mechanism. If your application generates custom
output files, you do not need these options.

4. make sure to change requested time by 12h

The script below summarize those changes:

Checkpoint SLURM jobs

Introduction

How to use it

#!/bin/sh

#SBATCH --job-name job1

#SBATCH --cpus-per-task 4

#SBATCH --partition cpu

#SBATCH --time 12:00:00

#SBATCH --mem=16G

#SBATCH --error job1-%j.error

#SBATCH --output job1-%j.out

source /dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

https://criu.org/Main_Page


Make sure to use Sbatch  and not sbatch . Additionally to the out and error files produced by
SLURM, the execution of the job will generate:

1. checkpoint-JOB_ID.log: checkpoint log
2. checkpoint-JOB_ID: application checkpoint files. Please do not delete this directory until

your job has finished otherwise the job will fail.

Tensorflow:

launch_app $APP

the --time parameter does not limit the duration of the job but It will be used to create the
checkpoint. For example for a --time 12:00:00 , after 12 hours the job will be checkpointed
and it will be rescheduled some minutes later. The checkpoint uses low level Operating
System mechanism so it should work for most of applications, however, there coud be some
error with some exotic applications. That is why it is good to check the job after the first
checkpointing (12 hours), so as to know if the application is compatible with checkpointing.

Launching the job

Sbatch job.sh

Make sure not to use the option #SBATCH --export NONE  in your jobs“

Job examples:
#!/bin/sh

#SBATCH --job-name job1

#SBATCH --cpus-per-task 1

#SBATCH --partition cpu

#SBATCH --time 12:00:00

#SBATCH --mem=16G

source /dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

launch_app ../pi_css5 400000000



Samtools:

If your job script look like this:

#!/bin/sh

#SBATCH --job-name job1

#SBATCH --cpus-per-task 4

#SBATCH --partition cpu

#SBATCH --time 12:00:00

#SBATCH --mem=16G

export OMP_NUM_THREADS=4

source ../tensorflow_env/bin/activate

source /dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

launch_app python run_tensorflow.py

#!/bin/sh

#SBATCH --job-name job1

#SBATCH --cpus-per-task 1

#SBATCH --partition cpu

#SBATCH --time 12:00:00

#SBATCH --mem=16G

module load gcc samtools

source /dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

launch_app samtools sort 

/users/user1/samtools/HG00154.mapped.ILLUMINA.bwa.GBR.low_coverage.20101123.bam -o 

sorted_file.bam

Complex job scripts

#!/bin/sh

#SBATCH --job-name job1

#SBATCH --cpus-per-task 1



Only the command_n will be checkpointed. The rest of the commands will be executed each time
the job is restored. This can be a problem in the following cases:

1. command_1, command_2 ... take a considerable amount time to execute
2. command_1, command_2 generate input for command_n. This will make the checkpoint

fail if the input file differs in size

For those cases, we suggest to wrap all those commands inside a shell script and checkpoint the
given shell script.

and make the script executable:

job example:

#SBATCH --partition cpu

#SBATCH --time 12:00:00

#SBATCH --mem=16G

module load gcc samtools

source /dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

command_1

command_2

command_3

command_4

launch_app command_n

command_1

command_2

command_3

command_4

command_n

chmod +x ./script.sh

#!/bin/sh

#SBATCH --job-name job1

#SBATCH --cpus-per-task 1

#SBATCH --partition cpu



If you want checkpoints logs and files to be located in a different directory, you can use the
following variable:

Be sure to define it either in your shell before submitting the job or in the job script before loading
ckpt_methods.sh  script. Here below, an example:

If you use the options --mail-user  and --mail-type  on your job you could receive a lot of
notifications. The job will be go thorought the normal job cycle start and end several times. So, you

#SBATCH --time 12:00:00

#SBATCH --mem=16G

module load gcc samtools

source /dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

launch_app ./script.sh

Make sur to not redirect standard output on your commands, for example,
command > file . If you want to do this, you have to put the command in a
different script

“

Custom location for log and checkpoint files

export CKPT_DIR='ckpt-files'

#!/bin/sh

#SBATCH --job-name ckpt-test

#SBATCH --cpus-per-task 1

#SBATCH --time 00:05:00

module load python

export CKPT_DIR='ckpt-files'

source /dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

launch_app python app.py

Email notifications



will end up with a lot of notification which depends on the walltime of your job.

You can reduce this notifications if you used:

r-light  module provides R and Rscript commands in different versions using a container. If your
job depends on this module you should replace Rscript  by the whole singulairity command. Let's
suppose you have the following script:

In order to know the whole singularity command, you need to type which Rscript , which will
produce the followin output:

You copy paste that into your job like this:

 --mail-type END,FAIL

Applications based on r-light module

#!/bin/bash -l 

#SBATCH --job-name r-job

#SBATCH --cpus-per-task 1

#SBATCH --time 00:05:00

source /dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

module load r-light

launch_app Rscript test.R

Rscript ()

{ 

    singularity exec /dcsrsoft/singularity/containers/r-light.sif /opt/R-4.4.1/bin/Rscript 

"$@"

}

#!/bin/bash

#SBATCH --job-name ckpt-test

#SBATCH --cpus-per-task 1

#SBATCH --time 00:05:00

source /dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

module load r-light



In order to checkpoint java applications, we have to use two parameters for launching the
application:

This will deactivate the creation of the directory /tmp/hsperfdata_$USER, otherwise it will make the
checkpoint restoration fail

This will enable the Serial Garbage collector which deactivates the parallel garbage collector. The
parallel garbage collector generates a GC thread per thread of computation. Thus, making the
restoration of checkpoint more difficult due to the large number of threads.

In order to use the checkpoint mechanism with snakemake, you need to adapt the SLURM profile
used to submit jobs into the cluster. Normally the SLURM profile define the following options:

cluster: slurm-submit.py (This script is used to send jobs to SLURM)
cluster-status: "slurm-status.py" (This script is used to parse jobs status from slurm)
jobscript: "slum-jobscript.sh" (Template used for submitting snakemake commands as job
scripts)

We need to modify how jobs are launched to slurm, the idea is to wrap snakemake jobscript into
another job. This will enable us to checkpoint all processes launched by snakemake.

The procedure consist in the following steps (the following steps are based on the slurm plugin
provided here: https://github.com/Snakemake-Profiles/slurm)

Please create the following script and call it job-checkpoint.sh:

launch_app singularity exec /dcsrsoft/singularity/containers/r-light.sif /opt/R-

4.4.1/bin/Rscript test.R

Java applications

-XX:-UsePerfData

-XX:+UseSerialGC

Snakemake

Create checkpoint script

#!/bin/bash

https://github.com/Snakemake-Profiles/slurm


make it executable: chmod +x job-checkpoint.sh. This script should be placed at the same
directory as the other slurm scripts used.

We need to modify the sbatch command used. Normally a jobscript is passed as a parameter, we
need to pass our aforementioned script first and pass the snakemake jobscript as a parameter, as
shown below (lines 6 and 9):

Ideally, we need to pass extra options to sbatch in order to control output and error files:

source /dcsrsoft/spack/external/ckptslurmjob/scripts/ckpt_methods.sh

launch_app $1

Modify slurm-scripts

def submit_job(jobscript, **sbatch_options):

    """Submit jobscript and return jobid."""

    options = format_sbatch_options(**sbatch_options)

    try:

        # path of our checkpoint script

        jobscript_ckpt = os.path.join(os.path.dirname(__file__),'job-checkpoint.sh')

        # we tell sbatch to execute the chekcpoint script first and we pass 

        # jobscript as a parameter

        cmd = ["sbatch"] + ["--parsable"] + options + [jobscript_ckpt] + [jobscript]

        res = sp.check_output(cmd)

    except sp.CalledProcessError as e:

        raise e

    # Get jobid

    res = res.decode()

    try:

        jobid = re.search(r"(\d+)", res).group(1)

    except Exception as e:

        raise e

    return jobid

  



This is necessary to isolate errors and warnings raised by the checkpoint mechanism into an error
file (as explained at the beginning of this page). This is only valid for the official slurm profile as it
will treat snakemake wildcards defined in Snakefile (e.g rule).

You still need to export some variables before launching snakemake:

With this configuration, the checkpoint will start 30 min before the end of the job.

It does not work for MPI and GPU applications
The application launched should be composed of only one command with its arguments. If
you need complex workflows wrapt the code inside a script.

sbatch_options = { "output" : "{rule}_%j.out", "error" : "{rule}_%j.error"}

Export necessary variables

export SBATCH_OPEN_MODE="append"

export SBATCH_SIGNAL=B:USR1@1800

snakemake --profile slurm-chk/ --verbose 

Limitations

Révision #25
Créé 11 juillet 2022 09:45:13 par Cristian Ruiz
Mis à jour 15 avril 2025 05:42:04 par Cristian Ruiz


