
If you see the following error when compiling a code on the cluster:

That means that the software you are trying to compile needs a specific header file provided by a
third party library. In order to use a third party library, the compiler mainly needs two things:

a header file XXXX.h
the binary of the library: XXXXX.so

By default in Linux systems, those files are located in default paths as: /usr, /lib, etc.. There are two
ways to tell the compiler where to look for those files: Makefile or using compiler variables.

Makefiles provide the following Variables :

CFLAGS
CXXFLAGS
FFLAGS
LDFLAGS

The three first variables are used to pass extra options to a specific compiler and language, c, c++
and fortran respectively. The last variable is meant to be used to pass the option -L -l which are
used by the linker.

Example

Here we will tell the compiler where to find the include files and the location of libraries. Those
variables should already be present on the makefile and used on the compilation process.

Compiling software using
cluster libraries

fatal error: XXXX.h: No such file or directory

Makefile

CFLAGS+= -I/usr/local/cuda/include
LDFLAGS+= -L/usr/local/cuda/lib -lcudnn

GCC Variables

https://www.gnu.org/software/make/manual/make.html#Implicit-Variables

if you are using GCC, you can use the following Variables :

CPATH
LIBRARY_PATH

This would have the same result as modifying the variable on the Makefile. This procedure is very
useful in case you do not have access to the Makefile or Makefile variables are not used during
compilation.

On the cluster, libraries are provided by modules which means that you need to tell the compiler to
look for headers files and binary files in special locations. The procedure is the following:

load the library: module load XXX
find the name of the ROOT variable by executing: module show XXX
Use that variable on the CFLAFGS and LDFLAGS definition

Example

CPATH=/usr/local/cuda/include
LIBRARY_PATH=/usr/local/cuda/lib

Using cluster libraries

$ module load cuda
$ module show cuda

 /dcsrsoft/spack/arolle/v1.0/spack/share/spack/lmod/Zen2-IB/Core/cuda/11.6.2.lua:

whatis("Name : cuda")
whatis("Version : 11.6.2")
whatis("Target : zen")
whatis("Short description : CUDA is a parallel computing platform and programming model invented by NVIDIA.
It enables dramatic increases in computing performance by harnessing the power of the graphics processing
unit (GPU).")
help([[CUDA is a parallel computing platform and programming model invented by
NVIDIA. It enables dramatic increases in computing performance by
harnessing the power of the graphics processing unit (GPU). Note: This
package does not currently install the drivers necessary to run CUDA.
These will need to be installed manually. See:

https://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html

You can observe that there is the variable CUDA_ROOT which is the one that should be used.

This is quite a complex example, sometimes you only need -L$(XXX_ROOT)/lib .

Example for R package

In the case of an R package, we do not have control over the Makefile, so the only option is to use
GCC variables. For an R package that depend on gsl and mpfr libraries, we need to do the
following:

https://docs.nvidia.com/cuda/ for details.]])
depends_on("libxml2/2.9.13")
prepend_path("LD_LIBRARY_PATH","/dcsrsoft/spack/arolle/v1.0/spack/opt/spack/linux-rhel8-zen/gcc-8.4.1/cuda-
11.6.2-rswplbcorqlt6ywhcnbdisk6puje4ejf/lib64")
prepend_path("PATH","/dcsrsoft/spack/arolle/v1.0/spack/opt/spack/linux-rhel8-zen/gcc-8.4.1/cuda-11.6.2-
rswplbcorqlt6ywhcnbdisk6puje4ejf/bin")
prepend_path("CMAKE_PREFIX_PATH","/dcsrsoft/spack/arolle/v1.0/spack/opt/spack/linux-rhel8-zen/gcc-
8.4.1/cuda-11.6.2-rswplbcorqlt6ywhcnbdisk6puje4ejf/")
setenv("CUDA_HOME","/dcsrsoft/spack/arolle/v1.0/spack/opt/spack/linux-rhel8-zen/gcc-8.4.1/cuda-11.6.2-
rswplbcorqlt6ywhcnbdisk6puje4ejf")
setenv("CUDA_ROOT","/dcsrsoft/spack/arolle/v1.0/spack/opt/spack/linux-rhel8-zen/gcc-8.4.1/cuda-11.6.2-
rswplbcorqlt6ywhcnbdisk6puje4ejf")

export CFLAGS="-I$CUDA_ROOT/include"
LDFLAGS+= -L$(CUDA_ROOT)/lib64/stubs -L$(CUDA_ROOT)/lib64/ -lcuda -lcudart -lcublas -lcurand

mdoule load gsl mpfr
export CPATH=$GSL_ROOT/include:$MPFR_ROOT/include
export LIBRARY_PATH=$GSL_ROOT/lib:$MPFR_ROOT/lib

Révision #7
Créé 20 juillet 2023 08:32:57 par Cristian Ruiz
Mis à jour 20 juillet 2023 11:22:37 par Cristian Ruiz

