
Suppose that you have finished writing your code, say a python code called <my_code.py>, and
you want to run it on the cluster Curnagl. You will need to submit a job (a bash script) with
information such as the number of CPUs you want to use and the amount of RAM memory you will
need. This information will be processed by the job scheduler (a software installed on the cluster)
and your code will be executed. The job scheduler used on Curnagl is called SLURM (Simple Linux
Utility for Resource Management). It is a free open-source software used by many of the world’s
computer clusters.

The clusters contain several partitions (sets of compute nodes dedicated to different means). To list
them, type

As you can see, there are three partitions:

cpu - this is the main partition and includes the majority of the compute nodes
gpu - this partition contains the GPUs equipped nodes
interactive - this partition allows rapid access to resources but comes with a number of
restrictions

Each partition is associated with a submission queue. A queue is essentially a waiting line for your
compute job to be matched with an available compute resource. Those resources become available
once a compute job from a previous user is completed.

Note that the nodes may be in different states: idle=not used, alloc=used, down=switch off, etc.
Depending on what you want to do, you should choose the appropriate partition/submission queue.

To execute your python code on the cluster, you need to make a bash script, say my_script.sh ,
specifying the information needed to run your python code (you may want to use nano, vim or
emacs as an editor on the cluster). Here is an example:

How to run a job on Curnagl

Overview

The partitions

sinfo

The sbatch script

Here we have used the command module load python before python3 /PATH_TO_YOUR_CODE/my_code.py
to load some libraries and to make several programs available.

To display the list of available modules or to search for a package:

For example, to load bowtie2:

To display information of the sbatch command, including the SLURM options:

Finally, you submit the bash script as follows:

***Important:** We recommend to store the above bash script and your python code in your home
folder, and to store your main input data in your work space. The data may be read from your
python code.*
To show the state (R=running or PD=pending) of your jobs, type:

If you realize that you made a mistake in your code or in the SLURM options, you may cancel it:

#!/bin/bash -l

#SBATCH --job-name my_code

#SBATCH --output my_code.out

#SBATCH --partition cpu

#SBATCH --cpus-per-task 8

#SBATCH --mem 10G

#SBATCH --time 00:30:00

module load python

python3 /PATH_TO_YOUR_CODE/my_code.py

module avail

module spider package_name

module load bowtie2/2.4.2

sbatch --help

sbatch --usage

sbatch my_script.sh

Squeue

Often it is convenient to work interactively on the cluster before submitting a job. I remind you that
when you connect to the cluster you are actually located at the front-end machine and your must
NOT run any code there. Instead you should connect to a node by using the Sinteractive
command as shown below.

You can then run your code.

Hint: If you are having problems with a job script then copy and paste the lines one at a time from
the script into an interactive session - errors are much more obvious this way.

You can see the available options by passing the -h option.

To logout from the node, simply type:

scancel JOBID

An interactive session

[ulambda@login ~]$ Sinteractive -c 1 -m 8G -t 01:00:00

interactive is running with the following options:

-c 1 --mem 8G -J interactive -p interactive -t 01:00:00 --x11

salloc: Granted job allocation 172565

salloc: Waiting for resource configuration

salloc: Nodes dna020 are ready for job

[ulambda@dna020 ~]$ hostname

dna020.curnagl

[ulambda@login1 ~]$ Sinteractive -h

Usage: Sinteractive [-t] [-m] [-A] [-c] [-J]

Optional arguments:

 -t: time required in hours:minutes:seconds (default: 1:00:00)

 -m: amount of memory required (default: 8G)

 -A: Account under which this job should be run

 -R: Reservation to be used

 -c: number of CPU cores to request (default: 1)

 -J: job name (default: interactive)

 -G: Number of GPUs (default: 0)

Suppose you have 14 image files in path_to_images and you want to process them in parallel by
using your python code my_code.py . This is an example of embarrassingly parallel programming
where you run 14 independent jobs in parallel, each with a different image file. One way to do it is
to use a job array:

The above allocations (for example time=30 minutes) is applied to each individual job in your
array.

Similarly, if your script takes integer parameters to control a simulation. You can do something like:

exit

Embarrassingly parallel jobs

#!/bin/bash -l

#SBATCH --job-name my_code

#SBATCH --output=my_code_%A_%a.out

#SBATCH --partition cpu

#SBATCH --cpus-per-task 8

#SBATCH --mem 10G

#SBATCH --time 00:30:00

#SBATCH --array=0-13

module load python/3.9.13

FILES=(/path_to_configurations/*)

python /PATH_TO_YOUR_CODE/my_code.py ${FILES[$SLURM_ARRAY_TASK_ID]}

#!/bin/bash -l

#SBATCH --account project_id

#SBATCH --mail-type ALL

#SBATCH --mail-user firstname.surname@unil.ch

#SBATCH --job-name my_code

#SBATCH --output=my_code_%A_%a.out

#SBATCH --partition cpu

#SBATCH --cpus-per-task 8

Another way to run embarrassingly parallel jobs is by using one-line SLURM commands. For
example, this may be useful if you want to run your python code on all the files with bam extension
in a folder:

Suppose you are using MPI codes locally and you want to launch them on Curnagl.

The below example is a slurm script running an MPI code mpicode (which can be either of C,
python, or fortran type...) on one single node (i.e. --nodes 1) using NTASKS cores without using
multi-threading (i.e. --cpus-per-task 1). In this example, the memory required is 32Gb in total. To
run an MPI code, the loading modules is mvapich2 only. You must add needed modules (depending
on your code).

Instead of mpirun command, you must use srun command, which is the equivalent command to
run MPI codes on a cluster. To know more about srun, go through srun --help documentation.

#SBATCH --mem 10G

#SBATCH --time 00:30:00

#SBATCH --array=0-13

module load python/3.9.13

ARGS=(0.1 2.2 3.5 14 51 64 79.5 80 99 104 118 125 130 100)

python /PATH_TO_YOUR_CODE/my_code.py ${ARGS[$SLURM_ARRAY_TASK_ID]}

for file in `ls *.bam`

do

 sbatch --job-name my_code --output my_code-%j.out --partition cpu

 --ntasks 1 --cpus-per-task 8 --mem 10G --time 00:30:00

 --wrap "module load gcc/9.3.0 python/3.8.8; python /PATH_TO_YOUR_CODE/my_code.py $file" &

done

MPI jobs

#!/bin/bash -l

#SBATCH --account project_id

#SBATCH --mail-type ALL

#SBATCH --mail-user firstname.surname@unil.ch

For a complete MPI overview on Curnagl, please refer to compiling and running MPI codes

Put your file and data in the scratch and work folders only during the analyses that you
are currently doing
Do not keep important results in the scratch, but move them in the NAS data storage
Clean your scratch folder after your jobs are finished, especially the large files
Regularly clean your scratch folder for any unnecessary files

#SBATCH --chdir /scratch/<your_username>/

#SBATCH --job-name testmpi

#SBATCH --output testmpi.out

#SBATCH --partition cpu

#SBATCH --nodes 1

#SBATCH --ntasks NTASKS

#SBATCH --cpus-per-task 1

#SBATCH --mem 32G

#SBATCH --time 01:00:00

module purge

module load mvapich2/2.3.7

srun mpicode

Good practice

Révision #35
Créé 13 janvier 2020 11:37:28 par Philippe Jacquet
Mis à jour 6 mars 2025 15:56:21 par Cristian Ruiz

https://wiki.unil.ch/ci/books/service-de-calcul-haute-performance-%28hpc%29/page/compiling-and-running-mpi-codes

