
JupyterLab can be run on the curnagl cluster for testing purposes, only as an intermediate step in
the porting of applications from regular workstations to curnagl.

The installation is made inside a python virtual environment, and this tutorial covers the
installation of the following kernels: IPyKernel (python), IRKernel (R), IJulia (julia), MATLAB kernel (
matlab), IOctave (octave), stata_kernel (stata) and sas_kernel (sas).

If the workstation is outside of the campus, first connect to the VPN.

First create/choose a folder ${WORK} under the /scratch or the /work filesystems under your
project (ex. WORK=/work/FAC/.../my_project). The following needs to be run only once on the
cluster (preferably on an interactive computing node):

The IPyKernel is automatically available. The other kernels need to be installed according to your
needs.

Each time you start a new session on the cluster, remember to define the variable
${WORK} according to the path you chose when creating the virtual environment.

JupyterLab on the curnagl
cluster

Creating the virtual environment

module load gcc python
python -m venv ${WORK}/jlab_venv
${WORK}/jlab_venv/bin/pip install jupyterlab ipykernel numpy matplotlib

Installing the kernels

IRKernel
module load gcc r
export R_LIBS_USER=${WORK}/jlab_venv/lib/Rlibs
mkdir -p ${R_LIBS_USER}

https://www.unil.ch/ci/reseau-unil-chez-soi#guides-dinstallation

echo "install.packages('IRkernel', repos='https://stat.ethz.ch/CRAN/', lib=Sys.getenv('R_LIBS_USER'))" | R --no-
save
source ${WORK}/jlab_venv/bin/activate
echo "IRkernel::installspec()" | R --no-save
deactivate

IJulia
module load gcc julia
export JULIA_DEPOT_PATH=${WORK}/jlab_venv/lib/Jlibs
julia -e 'using Pkg; Pkg.add("IJulia")'

MATLAB kernel
${WORK}/jlab_venv/bin/pip install matlab_kernel matlabengine==9.11.19

IOctave
${WORK}/jlab_venv/bin/pip install octave_kernel
echo "c.OctaveKernel.plot_settings = dict(backend='gnuplot')" > ~/.jupyter/octave_kernel_config.py

stata_kernel
module load stata-se
${WORK}/jlab_venv/bin/pip install stata_kernel
${WORK}/jlab_venv/bin/python -m stata_kernel.install
sed -i "s/^stata_path = None/stata_path = $(echo ${STATA_SE_ROOT} | sed 's/\//\\\//g')\/stata-se/"
~/.stata_kernel.conf
sed -i 's/stata_path = \(.*\)stata-mp/stata_path = \1stata-se/' ~/.stata_kernel.conf

sas_kernel
module load sas
${WORK}/jlab_venv/bin/pip install sas_kernel
sed -i "s/'\/opt\/sasinside\/SASHome/'$(echo ${SAS_ROOT} | sed 's/\//\\\//g')/g"
${WORK}/jlab_venv/lib64/python3.9/site-packages/saspy/sascfg.py

Running JupyterLab

Before running JupyterLab, you need to start an interactive session!

Take note of the name of the running node, that you will later need. On curnagl, you can type:

If you didn't install all of the kernels, the corresponding lines should be ignored in the commands
below. The execution order is important, in the sense that loading the gcc module should
always be done before activating virtual environments.

Before you can copy and paste the link into your favorite browser, you will need to establish an
SSH tunnel to the interactive node. From a UNIX-like workstation, you can establish the SSH tunnel
to the curnagl node with the following command (replace <username> with your user name, and
<hostname> with the name of the node you obtained above, and the <port> number is obtained
from the link, it is typically 8888):

Sinteractive

hostname

Load python
module load gcc python

IOctave (optional)
module load octave gnuplot

IRKernel (optional)
export R_LIBS_USER=${WORK}/jlab_venv/lib/Rlibs

IJulia (optional)
export JULIA_DEPOT_PATH=${WORK}/jlab_venv/lib/Jlibs

JupyterLab environment
source ${WORK}/jlab_venv/bin/activate

Launch JupyterLab (on the shell a link that can be copied on the browser will appear)
cd ${WORK}
jupyter-lab

deactivate

ssh -n -N -J <username>@curnagl.dcsr.unil.ch -L <port>:localhost:<port> <username>@<hostname>

You will be prompted for your password. When you have finished, you can close the tunnel with
Ctrl-C.

The modules you install manually from JupyterLab in Python, R or Julia end up inside the JupyterLab
virtual environment (${WORK}/jlab_venv). They are hence isolated and independent from your
Python/R/Julia instances outside of the virtual environment.

Note on Python/R/Julia modules and
packages

Révision #19
Créé 24 février 2023 16:33:02 par Flavio Calvo
Mis à jour 5 juin 2023 13:36:48 par Margot Sirdey

