
This page shows performance of Llama and mistral models on Curnagl hardware. We have
measured the token throughput which should help you to have an idea of what is possible using
Curnagl resources. Training time and inference time for different task could be estimated using
these results.

Llama3

Official access to Meta Llama3 models: Meta Llama3 models on Hugging Face
Meta-Llama-3.1-8B-Instruct
Meta-Llama-3.1-70B-Instruct

Mistral

Official access to Mistral models: Mistral models on MistralAI website
Access to Mistral models on Hugging Face: Mistral models on Hugging Face
mistral-7B-Instruct-v0.3
Mixtral-8x7B-v0.1-Instruct

Performance of LLM
backends and models in
Curnagl

Introduction

Models and backends tested
Tested Models

https://huggingface.co/meta-llama
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://docs.mistral.ai/getting-started/models/models_overview/
https://huggingface.co/mistralai
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1


vLLM

vLLM backend provides efficient memory usage and fast token sampling. This backend is ideal for
testing Llama3 and Mistral models in environments that require high-speed responses and low
latency.

llama.cpp

llama.cpp was primarily used for llama but it can be applied to other LLM models. This optimized
backend provides efficient inference on GPUs.

Transformers

If not the most widely used LLM black box, it is one of them. Easy to use, the Hugging Face
Transformers library supports a wide range of models and backends. One of its main advantages is
its quick set up, which enables quick experimentation across architectures.

mistral-inference

This is the official inference backend for Mistral. It is (supposed to be) optimized for Mistral's
architecture, thus increasing the model performance. However, our benchmarks results do not
demonstrate any specificities to Mistral model as llama.cpp seems to perform better.

Three different types of GPUs have been used to benchmark LLM models:

A100 which are available on Curnagl, official documentation,
GH200 which will be available soon on Curnagl, official documentation,
L40 which will be available soon on Curnagl, official documentation and specifications.

Here are their specifications

Characteristics A100 GH200 L40S

Number of nodes at UNIL 8 1 8

Memory per node (GB) 40 80 48

Tested Backends

Hardware description

https://github.com/vllm-project/vllm
https://github.com/ggerganov/llama.cpp
https://huggingface.co/docs/transformers
https://github.com/mistralai/mistral-inference
https://www.nvidia.com/en-us/data-center/a100/
https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip?ncid=no-ncid
https://www.nvidia.com/en-us/data-center/l40/
https://resources.nvidia.com/en-us-l40s/l40s-datasheet-28413?ncid=no-ncid


Characteristics A100 GH200 L40S

Number of CPU per NUMA
node

48 72 8

Memory bandwidth - up to
(TB/s)

1.9 4 0.86

FP64 performance
(teraFlops)

9.7 34 NA

TF64 performance
(teraFlops)

19.5 67 NA

FP32 performance
(teraFlops)

19.5 67 91.6

TF32 performance
(teraFlops)

156 494 183

TF32 performance with
sparsity (teraFlops)

312 494 366

FP16 performance
(teraFlops)

312 990 362

INT8 performance
(teraFlops)

624 1.9 733

Depending on the code you are running, one GPU may better suit your requirements and
expectations.

Note: These architectures are not powerful enough to train Large Language Models.

Note: Our benchmarks aim to determine which GPU types should be provided to researchers. If
you require new GPUs for your research, feel free to reach out to us through the Help Desk. In case,
you and other researchers agree on the same GPU request, we will do our best to provide new
resources that meet your needs.

This chat dataset from GPT3 has been used to benchmark models.

In order to guarantee reproduciblity of resultst and be able to perform a comparison between
different bechmarks we set the following parameters:

The maximum number of tokens to generate, is set to 400
The temperature, which controls the output randomness, is set to 0

Inference latency results

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split.json


The context size, which is the number of tokens the model can process within a single
input, is set to default . This means the maximum context size of the model (e.g 131072
for Llama3.1)
Use of GPU exclusively
All models are loaded in F16 (no quantization)

Backend results
(Token/seconds)

A100 GH200 L40

vllm 74.1 - -

llama.cpp 53.8 138.4 42.8

Transformers 30 41.3 21.6

mistral-inference 23.4 - 25

Backend results
(Token/seconds)

A100 GH200 L40

llama.cpp NA NA 23.4

Transformers NA NA 8.5

Backend results
(Token/seconds)

A100 GH200 L40

llama.cpp 62.645 100.845 43.387

Transformers 31.650 43.321 21.062

vllm 44.686 119.59 45.176

Backend results (Token/seconds) L40

Mistral models
mistral-7B-Instruct-v0.3

Mixtral-8x7B-v0.1-Instruct

Llama models
8B Instruct

70B Instruct



llama.cpp 5.029

Transformers 2.372

vllm 30.945

Mixtral 8x7B and Llama 70B Instruct are composed of several billions of parameters.
Therefore the resulting memory consumption for inference can only be supported by
multiple GPUs using the same machine or by using a combination of VRAM and RAM host
memory. This of course will degrade the performance because we need to transfert data
between two types of memory which could be slow. GH200 has a large bus memory which
offers a good performance on this types of cases.
The use of distributed setup adds a lot of latency.
Transformers backend offers a good trade-off between learning curve and performance.
Banckends offer the possibility to configure a context size. The parameter has no impact
on peformance (token throughput) but it is correlated to the amount of VRAM consumed.
Therefore, if you want to optimize memory consumption you should set the context size to
an appropiate value.
GH200 offers the best inference speed but it could be difficult to set up and install
libraries on.
The results shown here were obtained without any optimization. There are optimization
than can be applied like quantization and flash attention.

Conclusions

Révision #38
Créé 6 novembre 2024 08:56:43 par Cristian Ruiz
Mis à jour 25 mars 2025 12:39:09 par Cristian Ruiz


